Test Prep 2:
 Friday

 HW 2 (Next Tue):
 2.1, 2.2

2.1: Integrating Factors (Linear 1st Order Diff. Eqns)

Recall: We have been solving 1st order equations such as:

$$\frac{dy}{dt} = G(t, y)$$

We call the equation *linear* if G(t, y) is a linear function of y, that is:

G(t, y) = m(t)y + b(t)

Otherwise, we say it is non-linear.

Many important applications we have seen are linear (populations, bank accounts, air resistance, temperature, etc...), so this is an important special case.

Given a 1st order linear ODE, we like to re-arrange it into the form:

$$\frac{dy}{dt} + p(t)y = g(t)$$

Examples:

1.
$$\frac{dy}{dt} + ty = t^3$$

Give $p(t)$ and $g(t)$.

2.
$$x \frac{dy}{dx} = \sin(x) - 2y$$

Give $p(x)$ and $g(x)$.

Big Observation 1

The form

$$\frac{dy}{dt} + p(t)y$$

looks sort of like the *product rule*.

Recall: Here is the product rule

$$\frac{d}{dt}(f(t)y) = f(t)\frac{dy}{dt} + f'(t)y$$

Example:

$$\frac{dy}{dt} + 2y = \frac{t}{e^{2t}}$$

so $p(t) = 2$ and $g(t) = \frac{t}{e^{2t}}$

What happens if you multiply both sides by e^{2t} ?

You get

$$e^{2t}\frac{dy}{dt} + 2e^{2t}y = t$$

which is

$$\frac{d}{dt}(e^{2t}y) = t$$

Integrating both sides gives

$$e^{2t}y = \frac{1}{2}t^2 + C$$

SO

$$y = \frac{\frac{1}{2}t^2 + C}{e^{2t}}$$

In this example, we call $\mu(t) = e^{2t}$, the *integrating factor*, which is a function we multiply by so we can reverse the product rule. Okay, sort of cool, but we were lucky this time, how can we make this work in a more general way? We need another big observation.

Big Observation 2

If F(t) is any antiderivative of p(t)

$$F(t) = \int p(t)dt$$

then

$$\begin{aligned} \frac{d}{dt} \left(e^{F(t)} y \right) &= e^{F(t)} \frac{dy}{dt} + p(t) e^{F(t)} y \\ &= e^{F(t)} \left(\frac{dy}{dt} + p(t) y \right). \end{aligned}$$

So if we multiply by

$$\mu(t) = e^{\int p(t)dt}$$

then we create a situation where we can reverse the product rule.

Integrating Factor Method

Given a linear, 1st order ODE

$$\frac{dy}{dt} = f(t, y)$$

Step 0: Put in form $\frac{dy}{dt} + p(t)y = g(t)$

Step 1: Find $F(t) = \int p(t)dt$ & write/simplify $\mu(t) = e^{\int p(t)dt}$

Step 2: Multiply BOTH sides by $\mu(t)$. & re-write LHS as product rule.

Step 3: Integrate both sides, and simplify.

Example:
$$\frac{dy}{dt} = \frac{\cos(t)}{t^2} - \frac{2y}{t}$$

Step 0:

$$\frac{dy}{dt} + \frac{2}{t}y = \frac{\cos(t)}{t^2}$$

Step 1:
$$F(t) = \int \frac{2}{t} dt = 2 \ln(t) + C$$

 $\mu(t) = e^{2 \ln(t)} = e^{\ln(t^2)} = t^2$

Step 2:
$$t^2 \frac{dy}{dt} + 2ty = \cos(t)$$

 $\frac{d}{dt}(t^2y) = \cos(t)$

Step 3:
$$t^2 y = \sin(t) + C$$

$$y = \frac{\sin(t) + C}{t^2}$$

Example:

$$3\frac{dy}{dt} - 6ty - 3e^{t^2} = 0$$

Example:

$$\frac{dy}{dt} = t - 3y$$

Two Notes:

- Only for linear 1st order ODEs!

Aside:

Again, sometimes a substitution can make it linear.

Example:

 $e^{y} \frac{dy}{dt} - \frac{1}{x}e^{y} = 3x$ is not linear Using

$$v = e^{y} \rightarrow \frac{dv}{dt} = e^{y} \frac{dy}{dt}$$

Changes it to

 $\frac{dv}{dt} - \frac{1}{x}v = 3x$ which is linear

 If we can't do the integrals we can still write our answer in terms of integrals.

In which case the convention is to write

$$\int f(t)dt = \int_0^t f(u)du + C$$

(so we can solve for C if needed). See next page for an example. Example:

$$\frac{1}{6}\frac{dy}{dt} + t^2y = \frac{1}{6}$$